JIAIC[S

COMMUNICATIONS

Published on Web 02/13/2004

Interrogating Conformationally Dependent Electron-Transfer Dynamics via
Ultrafast Visible Pump/IR Probe Spectroscopy
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It has long been recognized that the magnitude of deaoceptor
(D—A) electronic coupling could depend sensitively upon both
D—A orientation and the overall conformation of dor@pacet
acceptor (D-Sp-A) assembliésor D-Sp-A systems that manifest
a high degree of ground-state structural heterogeneneity, where
simple theoretical analyses predict a wide distribution of configu-
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little studied? In this report, we demonstrate for the first time the Al o= 1PS + -pyridne modss :
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utility of the time-resolved visible pump/mid-infrared (IR) probe
spectroscopito interrogate directly, and provide unique information
regarding, conformationally dependent photoinduced ET dynamics
and the subsequent structural evolution of the resulting charge-
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separated state.

The particular efficacy of ultrafast IR spectroscopy in the
investigation of ET processes derives from the fact that IR
vibrational bands are narrow: vibrational frequencies are thus sensi-
tive to molecular electronic states and therefore enable state-specific
detection. Furthermore, because vibrational transitions are more
spatially localized than electronic transitions, transient IR spectra
inherently possess considerable structural information. Fast visible
pump/IR probe methods consequently merge the advantages of vi-
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brational spectroscopy (spectral resolution and sensitivity) with the sl t P o ;C%gc 1 Z"P"w_' e
time resolution provided by short fs laser pulses. Exemplary visible AN ‘ 014 * D {85
pump/IR probe experiments involviny-[5-(10,20-diphenylpor- L A z % /
phinato)zinc(I1)]N'(octyl)pyromellitic diimide PzZn—PI) and [5-[4- 3 %u_‘lz Jao
(N-(N'-octyl)pyromellitic diimide)phenyl)ethynyl]-10,20-diphen- £, o bond §
ylporphinato]zinc(ll) PZn()PI) (Figure 1) emphasize these points. 8 / goor Jo Tss
The photoinduced charge separation (CS) and thermal charge ™ o4 a “""m'w’ & | Ne
recombination (CR) ET dynamics &fZn—Pl andPZn()PI have N V v oos ©
been characterized previously using visible purppobe spectros- 25 4 —osps . i PN
copy?in these system&cs> kcg for PZn—PI, while the opposite = o - 008 1 #2.03.04.:
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is true forPZn()PI [mean rate constant®Zn—PI kes= 1.9 ps?,
kcr = 15 pst; PZn()Pl: kes = 22 pst, ker = 3.3 ps?t (99:1
CDClg:pyridine; 23°C)]. Figure 1A exhibits the IR fingerprint of
the S-excited state of a benchmark (porphinato)zinc(PZ() (C) Polarized transient IR spectra BZn()PI with deconvoluted A- and
complex, ([5,10,15,20-tetraphenylporphinato]zinc(RPZn) ob- B-polarized absorptive components highlighted. (D) Time-dependent ap-
tained 1 ps following electronic excitation, while Figure 1B shows parent anisotropy of theZn*()PI~ 1648 cn! radical anion absorption
the polarized, visible pump/IR probe transient spectra obtained for 2and and the correspondiRgZn—P! torsion angle; the lines denote the

. . best biexponential function fits of these respective decayd80+ 70 fs,
PZn—PI at a time delaytfeiy) of 0.7 ps; note that the spectrumis 4 3. 08'\ps;0: 1.4+ 0.6 ps, 7 5 ps). Data were obtained at 231 °C;
dominated by ground-state bleaching bands (1775, 1730, and 137%ther experimental conditions are indicated in the figure panel insets.
cm!) and absorptive transitions (1655, 1440, 130350 cnt?) . »
associated with thePzZn*—PI~ CS staté. It is important to wher_ex- apq y-polarized transitions are not degenerfaidn_ a
underscore the two intense carbonyl modes observed iRZne- polarized visible p_ump/IR pr_o_be experiment, note that the anisotropy
Pl linear-IR spectrum: a strong, B-polarized transition at 1730 Of the Pl B-polarized transitionsrg) depends on th&Zn-to-PI
cmL, and a weaker A-polarized mode at 1775 émThese torsional angled (Scheme 1), while the anisotropy of the A-
polarized vibrational modes, coupled with removal of degeneracy Polarized bandsrg) does not. Therefore, the A-polarized band
of the PZn Q, and Q transitions, provide the necessary spectro- anisotropy can be related to the porphyrin Q-transition ellipticity
scopic handles (Figure 1B) to assess the mean interplanar torsionaParameter (eq 1),
angle between the D and A units. Previous work establishes that
introduction of sufficient electronic asymmetry converts the classic
PZn circular absorber into &,-symmetric elliptical chromophore,

Figure 1. (A) Transient IR spectra of th&PPZn S;-excited state; the
FTIR spectrum is displayed for comparison. (B) Exemplary polarized visible
pump/IR probe transient spectra BZn—PI (FTIR spectrum, inverted).
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Table 1. Anisotropy Values of the IR Bleach Bands and
Evaluated Ground-State Mean Interplanar Torsional Angles

PI

PI
/AG PZn

e e 0 (deg) taeay (PS)
PZn—PI 0.19 —0.19 78+ 40 0.5
PZn()PI 0.18 —0.11 50+ 3 0.47

aThe anisotropy error ist0.01 and+0.005 for A and B bands,
respectively? See ref 8.

which describes the ratio of thxe andy-polarized $-state extinction
coefficients at the excitation wavelengtly & eqdeqy); this
parameter can be determined directly from the early time anisotro-
pies. Knowing y enables the evaluation ofofd from the
anisotropy of the B-polarized bands (eq 2):
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Table 1 summarizes the results of such an analysiBZor—PI
and PZn()PI at ~0.5 ps delay times. Given the mathematical

meaning off = cos® v co<0,2 and coupling this information
with electronic structural studies and MOPAC-determined dihedral
angle energy distribution dataP suggests that the me&¥n-to-
Pl interplanar torsional angle for electronically excitedn—PI
species PZn*—Pl) that have undergone ET at this delay time is
centered at 90with a distribution width of 14, while the analogous
angle for'PZn*()PI attgely = 0.5 ps is centered at 30

For the inhomogeneously broadened carbonyl IR bands of Figure
1, the frequency distribution maps the torsional angle conforma-
tional distribution; the time evolution of the transient spectra can
be used to monitor the ET rate dependence upfBcheme 1). In
this regard, thé®>Zn()PI spectral evolution shows that absorption
maximum of thePI~ band at~1650 cnt both red-shifts 3.5 crt

and exhibits apparent anisotropy changes characterized by a 4-ps

time constant (Figure 1C,D), while the anisotropy of the A-polarized
bleach band at 1775 crhdecays only on the rotational time scale
(Tdecay™ 250 ps). Note that analysis of the B-bleach band dynamics
at~1730 cnrtis complicated due to nonlinear signal contributions
that derive from vibrational coupling® such features are clear in
transient spectra at later times (Figure S2). The time evolution of
the transient spectra in i~ absorption region (16201700 cn1?)

was therefore utilized to obtain dynamics-correlated structural
information.

As kes < kerin PZn()PI, the observed time evolution of the IR
spectra monitors structural evolution in tABZn*()Pl excited
state: at eachigeay the CS state absorption band reflects the
weighted distribution ofPZn*()PI conformers that undergo ET

at that time. The measured time-dependent anisotropy and maximal

absorption band frequency therefore vary with the depletion of
1PZn*()P1 conformeric populations that differ with respect to
torsional angled and necessarily manifest different CS rate
constants. To evaluate the time dependence, the B-polarized
vibrational mode contribution to the-1650 cn1! band was

This analysis (Figure 1D) indicates that more plaHazn*()PI
conformers exhibit larger-magnitude CS rate constants and that the
CS states of conformers possessing larger valugd @bminate

the observed spectrum at later times. The fast decay component
suggests that there is extremely rapid depopulation of CS-state
structures that feature the most extensive conjugatiatBQ fs).
These data show that as electronically exciedn*()Pl conform-

ers with increasingly larger averag&n-to-PI interplanar torsional
angles are depopulated with time, ®&nt()PI~ PZn-to-PI 0 value
evolves from 49 to 67over a 40-ps time domain. While similar
dynamics are evident fd?Zn—PI, discrimination of the disparate
torsional angle-dependent ET dynamics is more difficult as the mean
angle# is close to 90 andkcs is of larger magnitudé?

In summary, we have assessed the mean-to-Pl interplanar
torsional angle of electronically excited structural conformers that
undergo ET within the sub-ps time domain for b&En—PI and
PZn()PI and have determined for the caseRZn()PI how this
angle evolves with time. Finally, because vibrational transition
moments are often known and typically localized, this work under-
scores that polarized visible pump/IR probe spectroscopy defines
a valuable tool to interrogate structures in both electronically excited
and CS states; this fact, coupled with the ultrafast time resolution
and high sensitivity, makes the technique ideally suited to probe a
range of mechanistic issues relevant to charge-transfer reactions.
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